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1.  INTRODUCTION

Phenology is commonly defined as the study of the
timing of periodically recurring biological phenomena
(see Walther et al. 2002). Bird migration is a prime
example, the phenology of which has been studied for
>250 yr (Lehikoinen et al. 2004), with more than a
century of investigation of the causes underlying its
variability within and between years (reviewed by
Lack 1960). Many studies have linked changes in the

timing of migration with large-scale climate factors
and interannual variability in weather (reviewed by
Lehikoinen et al. 2004). Yet, our understanding of
responses to climate change remains quite limited.

Long-term, standardized monitoring data from bird
observatories at ‘hotspots’ along the migratory route
are becoming increasingly available. These data are
unarguably the best available on the migration of
many species, in terms of their resolution (daily data)
and constancy of sampling effort between years and
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within a season (standardized trapping or observation
protocols), and allow analysis of the whole seasonal
distribution of migration (Lehikoinen et al. 2004, Sparks
et al. 2005). Seasonal totals from monitoring are also
used for modelling population dynamics and change
(Francis & Hussel 1998, Knape et al. in press). All sur-
vey efforts will, however, have their shortcomings
(Bibby 2000), and there are several problematic issues
specific to these data.

Understanding the timing of biological events is a
classical problem in life-history evolution (Lack 1968,
Iwasa & Levin 1995). The timing of spring migration
sets the limit for the onset of breeding, and thus affects
the match between food requirements and availability
(Visser et al. 2004). Optimal adjustment of the timing of
migration and breeding in birds due to recent climate
change depends on factors such as mortality during
migration (Sillett & Holmes 2002, Newton 2006), pre-
breeding mortality and competition for territories
(Jonzén et al. 2007), and phenological changes in food
or predators (Stenseth et al. 2002, Visser & Both 2005,
van Asch & Visser 2007). Estimating parameters such
as mean arrival time only captures certain features of
the phenology. To better understand population conse-
quences of changes in the temporal match between
phenologies, we need models describing how migra-
tion intensity varies through the season.

However, it is not obvious how to model the pheno-
logy of bird migration. Weather conditions en route
affect the large-scale migratory movements of birds;
that is, the observed daily numbers of migrating birds
fluctuates (at time scales longer than a day, but shorter
than weeks), making bird migration past any particu-
lar location appear wavy through the season (Cooke
1913). The conceptually simple model of a unimodal,
bell-shaped curve may often provide an adequate
measure of the central tendency for migration dates.
However, it cannot account for the above-mentioned
weather effects or for mixtures of several populations,
sexes and age groups, which are frequently evident
from the data.

Bird migration phenology has traditionally been
described using simple measures of central tendency
(mean, median or mode) and spread (first and last
observations, or low and high quantiles, e.g., 5 and
95% quantiles). Changes in the timing of migration
and its relationship with covariates such as the North
Atlantic Oscillation (NAO) index have usually been
inferred on the basis of correlation analysis, simple
linear regression, or analysis of variance (ANOVA),
though sometimes using partial correlation, multiple
linear regression, or generalized linear models (GLM).
Regression coefficients for different species have then
been treated as independent and either discussed
independently, as samples from some predefined bio-

logically relevant groupings such as long-distance and
short-distance migrants, or (less frequently) subjected
to a multivariate analysis (Tryjanowski et al. 2002,
Hüppop & Hüppop 2003), in search of patterns.

To model phenology and changes in phenology more
accurately and in more detail, one must deal with vari-
ous sampling problems, such as incomplete observa-
tions, observation error, and varying sampling effort,
to get closer to specific features of the ‘true’ underlying
seasonal distribution or changes in phenology. This
may involve smoothing away day-to-day variability,
fitting a seasonal distribution curve, or incorporating
random effects in the model to account for statistical
dependence between observations.

In this paper, we review different approaches to
describing bird migration phenology and detecting its
change. Our emphasis will be on the former, since
relevant and accurate parameter estimates are a pre-
requisite for detecting change. Table 1 presents an
overview of the case studies reviewed. We have lim-
ited ourselves to studies using data from standardized
monitoring efforts, as these are the most frequently
used and are designed to control for some error
sources. However, many problematic issues are com-
mon to both standardized and less standardized moni-
toring data. We illustrate and briefly compare methods
using data on a long-distance migrant from a Norwe-
gian bird observatory. Some future challenges in the
modelling of bird migration phenology and its change
will be identified. However, we start by looking more
closely at the nature of data from bird observatories
and reviewing the challenges researchers meet in their
analysis.

2.  THE SIGNAL OF BIRD MIGRATION

Fig. 1a is an illustrative example of the raw data
obtained from standardized monitoring programmes at
bird observatories: the daily number of mist-netted
garden warblers Sylvia borin at Lista bird observatory
(58° 6’ N, 6° 34’ E; near the southernmost tip of Norway)
autumn 2004. Such data may need to be cleaned to
some extent; for the present example, only first-year
birds not previously captured in the same season were
included in further analyses (n = 106; 2 adult birds were
netted on 20 July and are marked in the plot with a
dashed vertical bar). Ideally, this time series would be
an unbiased estimate of the migration phenology for
this location and year. However, what we actually have
is an incomplete series of observations of a stochastic
signal (bird migration) contaminated by observation
error (location-specific effects and sampling effects,
including bias and varying effort). The within- and
between-seasonal varying expectation of this signal is
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what we usually want to estimate and characterize as
migration phenology, but the unknown observation
error complicates matters (see also Lehikoinen 1993).
Some of the problems typically encountered, regard-
less of the degree of standardization, are discussed in
sections 2.1 to 2.6 that follow:

2.1.  Missing days

Even though this bird observatory was permanently
manned throughout the monitoring periods, there
were 20 d when weather did not permit mist netting.
We cannot safely assume that these days are missing at
random. In our example, several periods of up to 4 con-
tiguous days are missing, particularly in the middle to
late part of the season, as expected from the generally
unstable and deteriorating weather conditions at this
time of the year. Some techniques for data analysis
require daily observations, and interpolation may intro-
duce bias. In this case, weather observations revealed
that all missing days were windy (>11 m s–1) and/or
rainy, conditions under which there is usually very
little observable passerine migration. A pragmatic ap-
proach would be therefore simply to assume that no
birds would be captured in the mist nets (i.e. substitute
missing values with zeros). Alternatives to this simple

method would be to impute data for the missing days
using regression with non-missing data or the expec-
tation–maximization (EM) algorithm (Dempster et
al. 1977, Morgan 2000). However, these techniques
assume that data are missing at random. Multiple
imputation (see Schafer 1999) based on a probabilistic
model taking into account the weather situation on the
present day and the migration intensity on neighbour-
ing days would be somewhat simpler and directly
incorporate a stochastic component.

2.2.  Non-constant daily effort

In monitoring schemes, the protocol is typically
highly standardized regarding the numbers of nets in
use, their position and the operating hours. Neverthe-
less, mist nets will have to be closed in heavy rain
and/or strong wind for animal welfare reasons. Under
such conditions, very few birds would be trapped even
if the nets were left open. At other times, the influx of
birds in the mist nets may be too large for the person-
nel to handle birds quickly enough to permit keeping
all mist nets open. If there is a record of the operating
hours of the mist nets, some sort of correction for non-
constant effort can be applied (e.g. by standardizing
the daily catches to the daily number of mist net hours,

62
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Fig. 1. Sylvia borin. Bird migration phenology as observed from standardized monitoring programmes at bird observatories. (a)
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as illustrated in Fig. 1a). However, bad weather may
affect both trapping effort and ‘true’ migration inten-
sity. Also, the seasonal change in day length may need
to be taken into account, the exact timing of trapping
efforts may matter since migration intensity varies
through the day, and mist nets may catch different
species to different extents according to their exact
location relative to habitat preferences. Making good
corrections for varying effort is not trivial, and it may
suffice to include a simple index of trapping effort as
an offset (a covariate with the coefficient fixed to 1) in
the model. Another option would be to weight obser-
vations by trapping effort, but the consequences of this
for estimating phenology are unclear, and the choice of
weighting schemes is non-trivial and affects the results.

2.3.  Truncation

Failing to include the beginning or end of migration
in the trapping period will introduce a bias in estimates
of migration timing as well as total numbers of
migrants observed over the season. The data in Fig. 1a
do not seem to be truncated, though it is hard to say
what the situation would be if we were also consider-
ing adult birds, since only 2 adults were trapped near
the start of the season. Whether truncation is a prob-
lem or not varies between species and between years.
In some cases, though rarely for passerines in seasonal
environments, migration periods may be rather indis-
tinct or even blend together, making their delimitation
somewhat arbitrary if biological cues, such as age or
moult, are not available. Climate change may increase
the risk or severity of truncation due to a shift in the
timing of migration and longer or thicker tails in the
distribution of arrivals (e.g. more migrants early in
spring and late in autumn). Few good remedies for
truncation are available, but peaks in migration inten-
sity may be identified even if the tails are truncated,
and it may still be possible to fit curves to the part of
the distribution that is observed. Bayesian estimation
may be helpful in constraining parameter estimates to
sensible values and accommodating the extra com-
plexities (see e.g. Jonzén et al. 2006, Saino et al. 2007,
this issue).

2.4.  Autocorrelation

Bird migration is a flux affected by spatially and tem-
porally correlated variables such as weather. Hence,
the number of birds observed on consecutive days is
usually correlated. Autocorrelation implies a depen-
dency between neighbouring observations, and has
traditionally been regarded as a nuisance to ignore or

get rid of, but it can also be modelled explicitly using
time-series methods. Numeric maximum-likelihood
estimation allows dependencies between errors to be
modelled and estimated. We recommend spending
some time studying within-year autocorrelation in bird
migration signals for its own sake, as it indicates the
impact of weather and other factors structuring the
migration flux. However, it is not simple to separate
between the various causes for autocorrelation, and
observed autocorrelation may partly be due to failure
in adequately removing a seasonal trend. Also, auto-
correlation indices calculated over the entire season
tend to be hard to interpret in the current setting,
where the absolute positions of elements in the time
series matters. ‘Moving window’ alternatives, such as
the local Moran’s I (Anselin 1995), estimate the auto-
correlation only in a small neighbourhood around the
focal point, and can thus pick up patterns which might
otherwise be missed.

2.5.  Non-stationarity

Statistical inference frequently assumes stationarity,
i.e. that the probability distribution of variables or error
terms remains constant over time. However, mean
migration intensity clearly changes throughout the
season. Subtracting a seasonal trend, or differencing
daily data, may leave a signal that is closer to station-
ary. The variance, too, is likely to change over the sea-
son. In general, variance increases with increasing
mean, and this is also expected in bird migration data,
where ‘zero-days’ typically will be interspersed with
good migration days throughout the season. On the
other hand, variability between years is, at high lati-
tudes, expected to be larger early in spring or late in
autumn, when variability in weather and the sensitiv-
ity of migration to such is largest (Sokolov et al. 1998,
Vähätalo et al. 2004). Overdispersed Poisson models
(where extra-Poisson variability in the error term is
modelled) may accommodate both the mean–variance
relationship and other variance components (see e.g.
Jonzén et al. 2006).

2.6.  Biological interpretation

The interpretation of the observed migration inten-
sity may change throughout the season, as we may not
be sampling the same population throughout. In
spring, high-latitude populations may be expected to
migrate later than those from lower latitudes, and it is
quite common for males to migrate earlier than females
(protandry; reviewed by Morbey & Ydenberg 2001). In
autumn, we have a mixture of adult and first-year
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birds, and these may or may not migrate in different
parts of the season. In the early part of the season,
we may, to a varying extent, be picking up small-scale
pre-migratory movements rather than true migration.
Since the timing of migration of individuals within a
population depends on factors specific to the individu-
als, such as migratory distance (Hötker 2002) and
build-up of fuel loads (Marra et al. 1998), and fuel
deposition rate varies within the season (Schaub &
Jenni 2000), we are likely to sample different popula-
tion segments in different parts of the season. Mass
movements, such as those observed for invasive spe-
cies or following cold spells late in autumn, would
obviously be an exception.

While we have indicated alleviating measures to
some of the above problems, some components of
observation error may never be handled properly. For
instance, a time-varying bias is introduced simply
because the positions of mist nets (or other trapping
equipment) are fixed, while their capture success and
birds’ relative use of different habitats vary with
weather conditions.

Different levels of variability in the data can be
distinguished in Fig. 1a: from day-to-day variability,
through waves of a week’s length or more, to a large-
scale unimodal or perhaps bimodal pattern. The vari-
ability at the smaller scales is a combination of sam-
pling variability and actual variability in the intensity
of migration, while at the larger scales it closely
reflects the overall shape of the phenological distribu-
tion. Even if we cannot separate ‘true phenology’ from
observation error, it is useful to ask ourselves how the
variability in the data is distributed across observation
scales, since this indicates the relative contribution of
processes at different scales. Also, if data from differ-
ent years mainly differ in their small-scale variability,
differences in the overall timing of migration are not
important in determining the overall shape of the phe-
nological distribution. Fig. 1b is based on a decomposi-
tion of the total variance of the daily data on garden
warblers at Lista into components of different observa-
tion scales, using wavelet coefficients from a maximum
overlap wavelet transform using the ‘least asymmetric’
wavelet of nominal width 8 (LA8). The component at
scale j describes variability in a weighted average of
observations on j consecutive days (e.g. day-to-day
variability is at a scale of 1 d), and weights are defined
in a manner that does not introduce dependence
across scales. The box plot shows the variability be-
tween years of these empirical power spectra for the
period from 1990 to 2004. We see that the largest pro-
portion of variance is typically found at the smaller
scales (indicating sampling and weather effects), while
variability between years is comparable at small and
large scales.

If we scale the bird migration signal by dividing with
the total number of birds observed during the season,
we obtain the (biased) empirical frequency distribution
of ringing or observation dates. Alternatively, cumula-
tive distributions can be used directly for certain non-
parametric distributional tests, such as the Kolmo-
gorov-Smirnov test. For instance, Jounela et al. (2006)
modelled the cumulative run of Atlantic salmon Salmo
salar with a logistic function. However, consecutive
values of the empirical cumulative distribution func-
tion are not independent: a sudden rush of migrants
will heavily influence the shape of the curve for all suc-
ceeding time values. Truncation or missing days are
also more problematic for cumulative distributions.
Hence, we prefer in the following to work with daily
numbers rather than cumulative.

3.  MODELLING BIRD MIGRATION PHENOLOGY

3.1.  Covariates

In the present paper, we are content with simply
modelling the temporal pattern of bird migration (time
within season as the only covariate) and not the effect
of other covariates per se. However, one could, for in-
stance, be interested in the effect of weather covariates
on migration, or in controlling for such when estimat-
ing population size. For mechanistic modelling of daily
trapping numbers, it appears promising that the migra-
tory movements of individual birds can, in part, be
explained by simple behavioural rules to reduce time
or energy expenditure during migration and stopover
(see Hedenström & Alerstam 1997, Weber & Houston
1997, Schaub et al. 2004, Liechti 2006). However, even
if the inclusion of covariates is straightforward, the
interpretation is not necessarily so. (1) Winds, temper-
ature and rainfall are not the whole story; in fact, a
large number of candidate variables interact (Table 2;
see also Gordo 2007, this issue), and it is hard to know
a priori which variables to include and what shape to
assume for the response function. (2) Species and
individuals respond differently, and the shape of the
response function may be conditional on sex, age,
internal state, season and external covariates. (3) Day-
to-day variability is not only affected by small-scale
processes and the general seasonal pattern of occur-
rence, but also by a number of intermediate-scale pro-
cesses of partly stochastic nature (such as the move-
ment of weather systems) or that are hard to quantify,
such as social interactions, intensity of competition and
predation pressure (Moore & Yong 1991, Helm et al.
2006, Trnka & Prokop 2006). (4) Bird migration is a flux
of organisms, and the weather situation at the study
site is not necessarily a good predictor for the number

64



Knudsen et al.: Characterizing bird migration phenology

of birds occurring there. (5) For many species, the birds
captured or observed are on stopover, so the capture
rate on a particular day is a function of both previous
influx and current efflux, which is typically differently
(sometimes oppositely) affected by covariates.

Even if our interest is solely in modelling the intensity
of bird migration through the season, it could be sensi-
ble to include covariates other than time in the model.
For instance, by including weather covariates account-
ing for day-to-day variability in capture probability (ob-
servation error), one may identify the remaining pat-
tern more clearly. On the other hand, the same weather
covariates may also affect ‘true’ migration intensity,
which we would not want to control for, so the desired
effect can be hard to obtain in practice. It could be
argued that local weather conditions (such as mist) will

mostly affect capture probability, whereas
large-scale weather patterns (such as air-pres-
sure fields and temperatures on the previous
day in the source areas of migrating birds)
would mainly affect migration activity. How-
ever, small-scale and large-scale weather con-
ditions are often strongly correlated.

As a first step, progress could be made by
looking more closely at the way variables
interact and the possibilities for reducing the
dimensionality of variables and aggregating
variables into relevant ‘packages’. For in-
stance, other species of migrants, large-scale
climate indices, or composite variables such as
principal components may be included as
proxy variables, i.e. covariates that may not be
mechanistically important, but that can ‘soak
up’ effects of covariates not included, to avoid
these from becoming part of the error term.
Further work is also needed on determining
the appropriate time windows and spatial
extents for the impact of variables such as
temperature, rainfall and the NAO index (see
Ahola et al. 2004 and Hüppop & Winkel 2006).

Alternatively, if our interest is mainly in
controlling for unknown sources of variability in the
data, these may be accounted for by random effects
(e.g. random day effects in common with a set of spe-
cies that will ‘soak up’ effects of weather). If important
covariates are unobservable or the observation process
is complex, more explicit forms of latent-variable mod-
elling may be required (de Valpine & Hastings 2002).

3.2.  Smoothing

Smoothing can be defined as the use of (mainly non-
parametric) tools to capture patterns in observed data,
yielding a less variable signal where noise is reduced
and no rigid form of the relationship between predictor
and response variables is assumed. We will only con-
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Table 2. Some variables likely to affect the probability of observing/
trapping a bird at a given day and location en route during migration.
Variables are classified according to the typical time scale of influence
and whether primarily exogenous (environmental), endogenous (due to
‘internal’ factors specific to the individual), or a result of interactions
between the 2. Variables mainly related to the observation process 

are not included

Fine scale Medium scale Coarse scale
(d) (d to wk) (wk to mo)

Exogenous
Wind Weather systems Photoperiod
Cloud cover Cold spells Temperature
Precipitation Habitat quality Rainfall patterns
Fog Food availability

Endogenous
Physiological stress Energetic balance Metabolic rate

Progress of moult Endocrine regulation
Habitat preferences
Food preferences
Diurnal schedule

Interactions: exogenous–endogenous
Fuel deposition Social interactions Fuel deposits
Distance migrated Predation pressure Behaviour
Drift compensation Competition intensity Annual schedule
Reversed migration Mortality propensity

Table 3. Expectation and variance of skewness estimates [E(skew) and Var(skew), respectively] from 10 000 simulations of a sym-
metric, a positively skewed and a negatively skewed seasonal distribution of length 93 d (the spring observation period for our
sample data). For each simulation run, 100 birds were randomly and independently assigned to day numbers according to a beta
distribution. Skewness was calculated on the basis of raw data (top row), as well as smooths (from kernel density estimates 

using a Gaussian kernel of the specified width)

Kernel width (SD) Symmetric Positive skew Negative skew
(mean = 46.5, skew = 0) (mean = 26.6, skew = 0.597) (mean = 66.4, skew = –0.597)

E(skew) Var(skew) E(skew) Var(skew) E(skew) Var(skew)

– 0.001 0.030 0.579 0.037 –0.576 0.036
1 0.001 0.030 0.573 0.036 –0.575 0.036
5 0.0007 0.020 0.556 0.027 –0.558 0.027
10 –0.001 0.006 0.548 0.013 –0.547 0.013
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sider the case of 1 response variable y (bird abundance
or some index for this) and 1 predictor variable x (day
number), also called scatterplot smoothing. The chal-
lenge is to find a smooth approximation of bird migra-
tion phenology based on observations of x and y. This
has rarely been done, but there are at least 3 immedi-
ate motives for doing it: (1) to focus on time scales
longer than those of the raw observations, either
because they are biologically more relevant or simply
to reduce noise, (2) to allow for missing days or sparse
data, and (3) to allow for the flexible description of
phenology suggested by the data. The latter is espe-
cially useful for studying between-year variability in
the data, particularly if the phenological distribution is
complex in shape or varies between years. As shown in
Table 3 for simulated data, smoothing can decrease the
‘pure chance’ variability in parameter estimates (here,
of skewness), while the bias only slightly increases
with increasing smoothness. Hence, the parameteriza-
tion of phenology from smoothed data appears attrac-
tive. Smoothing does, however, assume data of ade-
quate quality; apart from changing the resolution, it
does not deal with problematic issues regarding sam-
pling and representativeness of the data. Although
several smoothers allow missing data, they are, to a
varying degree, sensitive to it.

3.2.1.  Smoothing techniques

In Fig. 2, various techniques of smoothing were
applied to the example data previously presented. The
techniques are briefly presented below; we refer to the
supplementary online appendix (available at www.int-
res.com/articles/suppl/c035p059_app.pdf) for a more
thorough treatment. All data analyses for the present
paper, as well as the preparation of figures, were per-
formed in ‘R’ v. 2-4-1 (R Development Core Team
2006), with the aid of the add-on packages ‘chron’
(James & Hornik 2007), ‘Kendall’ (McLeod 2005),
‘MASS’ (Venables & Ripley 2002), ‘quantreg’ (Koenker
2006), ‘sfsmisc’ (Maechler 2007), ‘sn’ (Azzalini 2006)
and ‘waveslim’ (Whitcher 2006).

(1) The moving average smooths in Fig. 2a were
obtained by calculating the average over a window of
fixed width that moves across the data, visiting the ele-
ments of the time series successively. Missing data can
be omitted from calculation or imputed. Increasing
window size increases the smoothness (though the
curve will always appear somewhat jagged), but also
increases bias, which in fact is a general pattern for all
smoothing techniques discussed here.

(2) LOESS smoothers make use of local regression
within a moving window, where k nearest neighbours
around the point of interest are weighted in a manner

putting most weight on the closest neighbours. The
degree of smoothing is usually determined by supply-
ing the span of the window, in Fig. 2b reported as the
fraction of the total length of the time series. The
curves are clearly much smoother than those of the
simple moving average. Fitting a second-order polyno-
mial rather than a straight line increases the ability to
pick up local features.

(3) A kernel smoother may be written on the form
l̂f(x) = (nh)–1∑n

i =1K [(x –xi)�h], where K(x) is a kernel
function integrating to 1 and h is the width of the
smoothing window, also known as the smoothing para-
meter or bandwidth (Silverman 1986). In other words,
the kernel smoother fits a constant at each element of
the time series by applying a weighted average over
a local neighbourhood, similar to a weighted moving
average. Popular choices for the kernel are the rectan-
gular (uniform), triangular, Gaussian, Epanechnikov,
biweight and cosine functions. As illustrated in Fig. 2c,
the choice of the kernel function does not affect our
estimate much, but less smooth kernels such as the
rectangular produce less smooth estimates due to
discontinuities.

Ader (1993) and Busse (1996) performed kernel
smoothing on bird migration data. They used different
weighting functions, but both authors performed the
smoothing iteratively until adequate smooths were
obtained. Kernel functions will quickly approach the
Gaussian kernel of increasing width when applied
iteratively, so a better option may be to smooth non-
iteratively using appropriate smoothing parameters.

(4) The wavelet transform is a relatively new tech-
nique that has become an exciting alternative for ana-
lyzing time-series data (Percival & Walden 2000). In
effect the discrete wavelet transform is a kernel
smoother with kernel functions (wavelets) designed
to satisfy certain conditions that make the transform
orthonormal. Such transforms are attractive since they
transform the data into a mathematically equivalent
representation (Fourier analysis being another exam-
ple). From a practical perspective, the main attraction
is a decomposition of the time series into a set of time-
scale components of the same length as the original
series, each component describing the time develop-
ment of the signal at a particular observation scale.
The transform may be performed in ways that easily
enable estimating the signal’s power spectrum (i.e. the
dispersion of variance across observation scales rather
than time). A drawback is that missing data will have
to be imputed. As seen in Fig. 2d, the smooths are visu-
ally very appealing while performing reasonably well.
They do, however, occasionally dip slightly below
zero, due to negative coefficients in the wavelet.

(5) A spline ĝ (x) is a piecewise polynomial approxi-
mation of a smooth function (Hastie & Tibshirani 1990,
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Wood 2006). A smooth function is here understood as
one that has derivatives of all finite orders, while a
spline will typically consist of cubic polynomials joined
together at so-called knots in a way that makes the
entire spline continuous up to and including the sec-
ond derivative. These cubic splines have several desir-
able attributes; in particular, they can in many cases be
shown to be optimal or near-optimal interpolators. Fit-
ting a cubic spline to data typically involves minimiz-
ing the expression ∑n

i =1[yi – g(xi)]2 + λ∫g ’’(x)2dx, where
the smoothing parameter λ determines the balance
between producing a good fit and a smooth function.
An appropriate choice of λ can be determined by (gen-
eralized) cross-validation, and the model fitted using
penalized least squares/penalized likelihood (Wood
2006) or the method of backfitting (Hastie & Tibshirani
1990). This is, however, not always successful, fre-
quently due to overfitting (in our case it suggested 43
degrees of freedom for the smooth; compare this with
the smooths in Fig. 2e).

3.2.2.  Comparing and interpreting smooths

As illustrated in Fig. 3 for our example data, there
are no large differences between smoothers with
respect to their bias, as gauged by cross-validation

error (here we used ordinary cross-validation to
enable comparison with non-linear curve fitting, and
estimated equivalent degrees of freedom from the
diagonal elements of the smoother matrix; see e.g.
Hastie & Tibshirani 1990). The amount of smoothing
should be of more concern. This may also be deter-
mined on the basis of cross-validation (selecting the
parameter corresponding to the minimum CV score;
see Fig. 3), but optimization algorithms can get
stuck at local minima, and, as previously illustrated
for splines, minimizing the CV score does not guaran-
tee that our smooth makes biological sense. We
should have some a priori idea on how much we want
to smooth and attempt to interpret the results in terms
of biology. While smoothing certainly is a valuable
tool for describing the intermediate-scale ‘waviness’
of observed bird migration or looking past the noise of
daily data, the level of detail that can be picked up is
limited by the data, and, as previously discussed,
these are subject to sampling effects and observation
error. Also, we must keep in mind that describing
patterns does not imply mechanistic explanations
(though it may be suggestive). For instance, if our
interest is primarily in how the (latent) timing of
migration has changed, multimodality due to different
populations or population segments may be of inter-
est, but it is rather a nuisance if caused by weather
systems impeding migration.

3.3.  Fitting seasonal distribution curves

An intuitively attractive way to model phenology is
to describe the expected phenological distribution as
some parametric function of time. The idea could be
put into words by asking: ‘when would the birds want
to arrive?’ or ‘what would the perfectly observed distri-
bution of arrival look like under constant ideal migra-
tion conditions?’ This approach can be considered
particularly useful when days are missing at random or
truncation is present in the observation effort (Jonzén
et al. 2006). The problem is managed statistically by
considering the days of observation as samples of
phenology at a given point in time. Summary statistics,
such as mean, variance, skewness and different per-
centiles, can easily be calculated from the fitted dis-
tribution instead of calculating them from the raw data.
Among the few examples of fitting distribution curves
to phenological events, Miller et al. (2002), Jenni &
Kéry (2003) and Jonzén et al. (2006) fitted Gaussian
curves to describe the timing of bird migration. Malo
(2002) fitted unimodal curves based on modified sine
functions to flowering phenology; Singh et al. (2006)
quantified changes in rice growth patterns by fitting
Gaussian curves to NDVI data; and Mäntyniemi &
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Romakkaniemi (2002) used a Dirichlet distribution to
model run timing of smolts in stocked Atlantic salmons,
as part of a larger hierarchical Bayesian mark–recap-
ture model. Peron et al. (2007, this issue) fitted 3 differ-
ently shaped unimodal distributions to daily indices of
birds trapped during post-nuptial migration, and esti-
mated peak migration dates from the model with the
best least-squares fit.

3.3.1.  Different distributions—modelling expected
phenology

According to the theory of quantitative genetics, the
frequency of a quantitative trait regulated by several
genes will be approximately normally distributed as
the number of genes or loci becomes sufficiently large
(e.g. Roff 1997). There is a considerable amount of her-
itable genetic variation in the timing of migration, both
in birds (Møller 2001, Pulido et al. 2001) and in some
fish species (Quinn et al. 2000). Hence, there is theo-
retical justification for using a Gaussian function as a
starting point for approximating the distribution of
migration events if we assume that the timing of migra-
tion is a quantitative trait. Three parameters need to be
fitted: mean, variance and maximum intensity. Some
empirical studies suggest that phenology is fairly well
approximated by a Gaussian function (Miller et al.
2002, Dahl et al. 2004, Jonzén et al. 2006).

If the distribution of phenology is clearly skewed, a
skew-normal distribution (Azzalini 1985) can be used.
The normal and skew-normal distributions are contin-
uous and defined for all real numbers. Thus, they
always gain positive values, leading to arbitrary delim-
itation of the beginning and end of the phenological
distribution. A flexible alternative is to use a scaled
beta distribution, which is defined on the interval [0,1]
using the shape parameters α and β (for our purpose,
length, location and maximum intensity will also have
to be fitted). Alternatively, Malo (2002) proposed a
flexible distribution with 5 parameters (start, duration,
maximum intensity, skewness and length of the tails),
which was successful in modelling unimodal flowering
phenology of varying shape. In Fig. 2f, we have plotted
the maximum-likelihood fit of the normal, skew-normal
and scaled beta distributions. For comparison with
the smooths, we assumed normally distributed errors,
though, for instance, Poisson-distributed errors would
be more sound (as discussed later).

Migration is not necessarily unimodal. One way to
model multimodal phenology is to sum several para-
metric functions. The number of phenological distribu-
tions can be determined by model selection (e.g. using
the Akaike information criterion), but it may be prefer-
able to determine it on biological grounds.

3.3.2.  Error structure and model fitting

Fitting seasonal distribution curves does not seem too
popular, possibly due to the many ways of modelling the
expectation and the error distribution, as well as the
potential problems (e.g. with convergence in iterative,
non-linear fitting procedures). In the simple case of a
unimodal distribution behaving nicely, it is worth noting
that the normal distribution reduces to a second-order
polynomial on a logarithmic scale. Thus, assuming a
Gaussian curve as the phenological distribution and a
multiplicative log-normal error structure with indepen-
dent observations, the curve can, on a log-scale, be fitted
by a second-order polynomial regression.

Numeric maximum-likelihood methods and Bayesian
methods add some flexibility to the models used. The
typically huge day-to-day variation can then be mod-
elled more closely. If a bird of a given species is
thought to be observed independently of other birds
the same day, the number of birds trapped on that day
can be modelled with a Poisson distribution, where
the day-specific expected value (λ) is described by a
seasonal distribution function (e.g. a Gaussian curve).
However, due to weather conditions, flocking behav-
iour, etc., the day-to-day variation is typically larger
than expected by a Poisson process. Such an overdis-
persed Poisson process can be modelled (e.g. using a
quasi-Poisson or negative binomial error distribution).
If weather effects are well known, they can be in-
cluded as covariates. Unknown, such variation can be
modelled in the error structure by assuming correlated
migration activity between species (which frequently
is found and can be due to, e.g., weather affecting
trapping numbers of different species similarly, as well
as overlapping seasonal distributions) or allowing
for autocorrelated residuals. Assuming that correlated
migration activity is reflected in correlated summary
statistics for the phenological distribution, the former
approach will also account for the inflated Type I error
rate expected when comparing phenological distribu-
tions of different species.

Bayesian methods enable restricting phenological dis-
tributions to realistic values by informative priors. A nice
feature with the Bayesian approach is the opportunity to
quite easily build hierarchical models accounting simul-
taneously for uncertainty in both the distribution of
migration passage time, as well as the further analysis,
such as advancement of timing over years.

3.3.3.  Interpretation

Model-based estimators of phenology can be more
robust against unknown weather effects on capture
success, and it is straightforward to account for vary-
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ing observation effort and truncated sampling peri-
ods. However, if there is large day-to-day variation
in the number of actually migrating birds, the true
quantiles of the arrival distribution in a given year
may be poorly estimated. Hence, fitting a seasonal
distribution curve is a sensible approach to modelling
the underlying (‘latent’) distribution of arrivals, and
its robustness makes it well suited for describing and
detecting long-term changes in the distribution, but
poorly suited for picking up deviations from the pos-
tulated model.

4.  MODELLING CHANGES IN PHENOLOGY

Recently observed changes in the timing of bird
migration have been a major impetus to the renewed
interest in bird migration phenology. However, as we
have seen, it is not obvious how to parameterize phe-
nology. Traditionally, some simply observed (e.g. first
arrival date) or aggregate (mean or median) measure
has been used. This may be justified from lack of
knowledge on how populations and population seg-
ments segregate in time, but, on the other hand,
recent studies indicate that different phases (such as
early, middle, late) of migration frequently respond
differently. Hence, it is recommended that all phases
of bird migration should be studied when possible
(Lehikoinen et al. 2004, Sparks et al. 2005). Some
early (e.g. 5th or 10th) and late (e.g. 90th or 95th)
percentiles have increasingly been reported in addi-
tion to the median (Vähätalo et al. 2004, Jonzén et al.
2006, Tøttrup et al. 2006a). This is also the case for
studies on the timing of migration in fish (Antonsson
& Gudjonsson 2002, Dahl et al. 2004). Obviously, the
modelling of changes in phenology over time relies
on a sensible model of phenology, a sensible parame-
terization and sensible parameter estimates. In Sec-
tions 3.2 and 3.3 we discussed tools for exploring
these issues (smoothing) and providing robust para-
meterization and estimates of phenology (fitting sea-
sonal distribution curves). We will, in the following,
discuss some methods for modelling change in quan-
tiles, regardless of whether these were obtained
directly from the raw data, from smooths or from a
modelled distribution.

4.1.  Correlations

Calculating linear correlation coefficients is a quick
and easy way to look or test for relationships between
variables. Nearly all of the reviewed studies report
some sort of correlation, and several studies use Pear-
son’s correlation coefficients as a major tool (e.g.

Hubálek 2003, 2004). It is a common belief that corre-
lation coefficients are more robust than regression
coefficients to violation of parametric assumptions.
This is not the case for Pearson’s correlation coeffi-
cient, which builds on assumptions similar to ordi-
nary least-squares linear regression. There are non-
parametric alternatives, however—the 2 most widely
known being Spearman’s rho and Kendall’s tau, both
based on rank transformations of the variables. The
former was used by Sokolov et al. (1998), Vähätalo et
al. (2004) and Rainio et al. (2006). Spearman’s rho can
be regarded as a special case of Pearson’s correlation,
whereby the data are replaced by their ranks. Hence,
the assumption of a linear relationship between the
variables is replaced by the weaker assumption of a
monotonic relationship, and the data need not be on an
interval scale (an ordinal scale suffices). This means
that we, for instance, need not assume that the re-
sponse of migration timing to the NAO index is the
same near the low (negative) end as it is near the high
(positive) end.

The partial correlation coefficient between 2 vari-
ables X and Y removes the effect of 1 or a set of con-
founding variables Z. In analogy with the simple
(Pearson’s) correlation coefficient, the square of the
partial correlation coefficient equals the partial R2. If
either X or Y is a predictor variable for the other, it
may be of interest to partial out the effect of some
covariate, such as observation effort (Vähätalo et al.
2004, Rainio et al. 2006) before letting the variable
enter the analysis. Doing this by using partial corre-
lation is, in practice, the same as doing a linear
regression in which variables are detrended by using
the residuals from a linear regression. If X and Y are
both predictor variables, detrending should eliminate
the need for an interaction term. Hence, Jonzén et al.
(2006) detrended the NAO winter index prior to
regressing arrival percentiles on the variables ‘Year’
and ‘NAO winter index’, since a (weak) linear rela-
tionship was found between the 2 predictors.

In correlative studies on time series, autocorrela-
tion in 1 or both investigated variables may give rise
to spurious correlations (i.e. overly strong relation-
ships and false rejection of the null hypothesis; see
e.g. Pyper & Peterman 1998). The problem is present
in simple correlation tests, as well as in linear multi-
ple regression and related techniques, and is, unfor-
tunately, often neglected. Some ways to handle the
problem include adjusting the degrees of freedom
(Post & Stenseth 1998, Pyper & Peterman 1998), as-
sessing significance levels using randomization tests
or Monte Carlo simulation (Piha et al. 2007) and
removing autocorrelation (due to, e.g., linear and
seasonal trends) prior to analysis (prewhitening; cf.
Chatfield 1996).
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4.2.  Linear models

Phrasing the research question within the frame-
work of linear models or GLMs allows some flexibil-
ity with respect to the model and error structure. The
variant most frequently reported is, however, simple
linear regression of migration timing on year (Cotton
2003, Hüppop & Hüppop 2003, Marra et al. 2005).
Comparing the timing of migration in different peri-
ods is an alternative that is also useful for meta-
analysis or sparse data (Zalakevicius 2001, Tryjanow-
ski et al. 2002, Butler 2003), but the delimitation of

periods is essentially subjective. As in the case of
modelling phenology itself, it is frequently not obvi-
ous which covariates should be important or at which
temporal and spatial scales they should be consid-
ered, and important covariates may be unobservable
(e.g. food availability). Hence, it has been common to
use a proxy variable, such as the (usually winter)
NAO index (Hurrell 1995, Hurrell et al. 2003, Hüp-
pop & Hüppop 2003, Stenseth et al. 2003), tempera-
tures upon arrival or en route (Ahola et al. 2004), or
rainfall/vegetation greenness in winter quarters (Saino
et al. 2004).
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In many cases, we will only have a single measure-
ment of the response variable for each value of the pre-
dictor variable, as in the case of analyzing trends in
migration date for garden warblers at Lista (Fig. 4a).
However, we sometimes have data from several bird
observatories available or wish to analyze data on sev-
eral species. In cases where we have some grouping of
the data according to some classification variable(s)
(e.g. repeated-measures data, longitudinal data, multi-
level data, block designs), mixed-effects models allow
more powerful modelling by a flexible specification of
the covariance structure of the model (Pinheiro & Bates
2000). Jenni & Kéry (2003), Jonzén et al. (2006) and
Rainio et al. (2006) applied such models to bird migra-
tion data. They distinguish between fixed effects (asso-
ciated with study design and assumed to be measured
without error, such as migratory status classified as
long-distance, short-distance, or partial migrants) and
random effects describing the variability between sub-
jects at each particular level. Effects may be nested
within each other. This allows, for instance, for a
hierarchical decomposition of variance into variance
among genera and variance among species of a genus,
the modelling of random and independent year-to-
year variability between species and the modelling of
interactions between a random and a fixed effect (e.g.
a random slopes model where NAO is allowed to have
different effects according to bird observatory). Struc-
ture in the error term may also be specified, enabling
the modelling of autocorrelation structures and cor-
related random fluctuations across bird observatories.

While time series usually are short and researchers
do not wish to discard data, we should not impose a
linear fit over time windows for with the data suggest
something else. An alternative to choosing time win-
dows a priori would be to fit piecewise linear functions.
This appears to be an overlooked issue in the analysis
of phenological time series, though Dose & Menzel
(2004) approached the issue from a Bayesian perspec-
tive and found that the likelihood of models with a
breakpoint (a change in slope) was far higher than
models without. There are several approaches to
fitting (including b-splines, joint optimization with
breakpoints included, and modelling a smooth transi-
tion between slopes), though it is problematic if the
number of breakpoints needs to be estimated as well.
For the present example, we only have 15 yr of data, so
inspecting the scatterplot clearly reveals the problem
with assuming a linear model for the whole period
(Fig. 4d). However, for longer time series it may be
helpful to search for plausible ranges for trends
and breakpoints using non-parametric test statistics
(assuming a monotonous relationship, but not assum-
ing linearity) that indicate the strength and signifi-
cance of trends. Of course, these may also be used as a

non-parametric alternative for assessing trends; see
the supplementary online appendix. One alternative
is the Mann-Kendall statistic (Mann 1945; see Novotny
& Stefan 2007 for an application), which can be written
S = ∑n–1

i = 1 ∑n
j = i +1Sgn(Xj – Xi), where 

and is asymptotically normally distributed. A scaled
version is plotted for various combinations of start and
end years in Fig. 4c (here leaving out the significance
level for the purpose of visual simplicity).

4.3.  Quantile regression

Quantile regression (Fig. 4b) is an elegant alterna-
tive to ordinary linear regression on sample quantiles.
Tøttrup et al. (2006a) fitted trends in the timing of bird
migration at Christiansø using both methods. They
found that slopes calculated using the 2 methods were
overall correlated and quite similar, but quantile re-
gression usually produced stronger and more signifi-
cant slopes. Cade & Noon (2003) provide a nice and
gentle introduction to the method. In essence, separate
regression lines are fitted for each of the specified
quantiles of the distribution of the response variable.
This is done by minimizing a sum of weighted absolute
errors rather than the sum of squared errors. By allow-
ing responses to differ in different parts of the response
distribution, the method relaxes distributional assump-
tions. In particular, ordinary regression techniques as-
sume that variance is homogenous across years, which
most frequently is not the case. For a more detailed dis-
cussion of the method, we refer to the supplementary
online appendix (available at www.int-res.com/articles/
suppl/c035p059_app.pdf).

4.4.  Time series methods

A time series is a collection of observations made se-
quentially in time (Chatfield 1996). Data on daily trap-
ping numbers of birds or annual estimates of arrival
time are examples of time series in which the data
points may be temporally dependent. Whereas the use
of time-series analysis has become common practice
among ecologists working on population dynamics (e.g.
Bjørnstad & Grenfell 2001), we know of only 1 example
of explicit time-series modelling of bird phenology
data. Forchhammer et al. (2002) analyzed data on the
spring arrival time of birds within an autoregressive
modelling framework. An autoregressive model (Box et
al. 1994) of order p can be written: Xt =  a1Xt –1 + a2Xt –2
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+ … + apXt – p + εt, where Xt is an observation at time t
(e.g. first arrival date in year t), εt is a purely random
process with zero mean and variance σ2, and ap is the
autoregression coefficient with lag p.

Forchhammer et al. (2002) built upon a conceptual
model developed by Post et al. (2001). First arrival date
in year t was modelled as a function of the arrival time
in the 2 preceding years, and NAO was included as a
covariate with and without a time lag. ‘Year’ was in-
cluded as a covariate to capture linear trends in arrival.
The autoregression coefficients measure the structural
dynamics, and the idea was to contrast the influence of
NAO and the temporal dependence with respect to
spring time arrival. Even though the approach is both
elegant and generally appealing, the ecological inter-
pretation of the results is far from trivial and the esti-
mates of autoregression coefficients are sensitive to
observation error (e.g. Freckleton et al. 2006).

5.  DISCUSSION

The wide-ranging biological consequences of global
climate change have been increasingly recognized
(Stenseth et al. 2002, Walther et al. 2002, IPCC 2007).
Challenges in the future study of climate change im-
pacts on avian biology have recently been reviewed by
Møller et al. (2004). In this paper, we have presented an
overview of different approaches and techniques that
have been or may become helpful in the analysis of the
signal of bird migration as picked up by observation
and trapping efforts. The phenomenological descrip-
tion we obtain from observing migration at a fixed point
is complex and noisy. Only a small part of the total flux
of bird migration is recorded at ground level, and it is
poorly known to what extent this matches the pattern
aloft. One study relating mist-netting numbers to noc-
turnal migration recorded by a passive infrared device
does, however, suggest that the 2 are positively corre-
lated (Zehnder & Karlsson 2001). For most species,
ground level monitoring data are our only source of
information on the detailed dynamics of bird migration,
due to the limitations of radar studies and wildlife
telemetry (Gauthreaux & Belser 2003, Cochran &
Wikelski 2005). While anticipating technological aid
(Wikelski et al. 2007), it may pay off well to make use of
the large and increasing amount of long-term data from
bird observatories, recording bird migration phenology
in great detail. A recent review of trends in the timing
of spring migration reveals large differences across
species and geography, but suggests consistent pat-
terns within a species (Rubolini et al. 2007, this issue).
This is not surprising, since other indicators of seasonal-
ity, such as vegetation greenness and local tempera-
tures, are not changing uniformly across space either

(see Stöckli & Vidale 2003), and species may be sensi-
tive to different cues over different time windows (Both
& te Marvelde 2007, this issue). Hence, moving further
from regarding these data simply as noisy measures of
timing is likely to be highly rewarding.

5.1.  Phenomenological description

Whereas a selection of sample statistics has been the
most common way of describing bird migration phe-
nology, we have presented 2 alternative approaches:
smoothing and fitting of a phenological distribution
function. The choice between them should depend on
the quality of the data and the questions posed, but
is also likely to be affected by any preference for
exploratory or confirmatory approaches to data ana-
lysis. Smoothing takes the data at hand and yields a
description of it at a controllable detail level, but does
not account for observation error and truncated data,
and only to a limited and variable extent for missing
data. If the data are poor and/or sparse, fitting a sea-
sonal distribution curve should be a more robust alter-
native, particularly for extracting information on the
‘underlying’ timing of migration. This would also typi-
cally be the preferred choice if following a confirma-
tory approach to data analysis. On the other hand, if
the data are of high quality, smoothing suggests likely
shapes of the seasonal distribution curve that may be
fed into confirmatory analysis using, for instance, a
generalized additive model (GAM). Some smoothing
techniques, in particular wavelet analysis, are useful
for describing time series at different observation
scales, which is important by its own virtue, but also
useful for stimulating thinking about the nature of the
data and suggesting covariates, as well as the range of
observation scales over which they may be important.
Considerations regarding the scales of observation and
ecological processes (see e.g. Peterson & Parker 1998)
have now become commonplace in disciplines such as
landscape ecology, but were characterized as a para-
digm shift when they entered the scene.

5.2.  Individual- and population-level mechanisms

Mechanistic explanations ultimately require detailed
knowledge at the levels of populations and individuals.
By analyzing genetic markers and the isotopic and
trace element composition of feathers, we are able to
gain some coarse insight into the migratory connectiv-
ity of individuals (i.e. the linkage between wintering
and summering areas), as well as their intermediate
stopover sites (Webster et al. 2002). Such insight is
valuable in understanding trends in the timing of life-
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history events. For instance, Marra et al. (1998) showed
that the quality of the wintering habitat of individual
American redstarts Setophaga ruticilla affected their
timing of and physical condition upon spring depar-
ture. This is likely to be reflected in their arrival at
breeding grounds, and indeed Norris et al. (2004)
found significant relationships between the quality of
winter habitat and arrival, with a poorer quality habitat
resulting in later arrival.

Carry-over effects between seasons may also be
mediated by mortality, which can be substantially
higher during migration than during other times of the
year (Sillett & Holmes 2002, Newton 2006). Migration,
arrival, or breeding can, of course, only be recorded for
individuals that survive migration, and the observed
distribution of timing is only representative for the sur-
vivors. Hence, if individuals that are characteristic for
one part of the distribution (e.g. related to sex, age, or
wintering area) survive less well than others in some
years, then this will be reflected in the distribution
even if the individual phenological traits are the same.

Mortality during the period of migration will affect
the distribution of arrivals even if mortality is indis-
criminate, since individuals arriving late will have to
survive for a longer period of time and, hence, have a
lower probability of surviving until arrival. This com-
plication should be considered when analyzing the
time of arrival as an individual trait (e.g. in order to
study selection or effects on individual performance),
but is not necessarily a concern when estimating
arrival time of the survivors that make up the popula-
tion of potential breeders. In the jargon of statistical
time-failure (‘survival’) analysis, individuals that die or
are removed before ‘failure’ (i.e. the event of interest)
are ‘right censored’ (Venables & Ripley 2002). Gienapp
et al. (2005) used a proportional hazard time-failure
model to describe the within-year relationship be-
tween changes in daily temperature and time of egg
laying. However, neither proportional hazard models,
nor accelerated life models (Venables & Ripley 2002)
are appropriate for modelling between-year variation
in migration phenology, since these models would imply
larger variation in arrival date when mean arrival date
is late, which is not realistic. Parametric hazard func-
tions can, however, be fitted to individual data by max-
imum-likelihood methods (Venables & Ripley 2002),
even in cases where the exact time of the event or
death is not known (Ergon et al. 2008).

5.3.  Recommendations

Our focus throughout this paper has been rather
specifically on bird migration data from standardized
monitoring programmes, but the problems, methods

and approaches presented are general and applicable
also to less standardized and more sparse data, as well
as to other phenological study systems. If the data are
of high quality, both smoothing and fitting a pheno-
logical distribution function will be robust alternatives
for extracting summary statistics, and smoothing re-
veals details in the within-season distribution of tim-
ing. Smooths may be included in confirmatory models,
using for instance GAMs, but for sparse, truncated,
and/or uncertain data, we recommend fitting a para-
metric distribution curve. Better fits can be obtained if
we allow some flexibility in the distribution curve and
error structure. This is also the case when modelling
trends over time. Mixed-effects models are a flexible
and powerful alternative to analyzing trends sepa-
rately for each species and grouping factor, and,
though linear trends may seem to be a natural choice,
they need not always be imposed over time windows
selected a priori.

While the fields of research on bird migration and
phenology are old and mature, the field of climate
change impacts on bird migration is young and in a
phase of phenomenological exploration and dissection.
There are great challenges in merging phenomeno-
logical and mechanistic approaches, but we think
there will also be great rewards, not least in terms of
better separation between ‘true’ phenology and pat-
terns imposed by the observation process.
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